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Abstract

This paper provides an application of fuzzy logic to the risk assessment of the transport of
hazardous materials by road and pipeline in order to evaluate the uncertainties affecting both
individual and societal risk estimates. In evaluating uncertainty by fuzzy logic, the uncertain input
parameters are described by fuzzy numbers and calculations are performed using fuzzy arithmetic;
the outputs will also be fuzzy numbers. This work is an attempt to justify some of the questions
the use of fuzzy logic in the field of risk analysis stimulates. This study provides, first of all, a
condensed description of the fundamentals of the mathematical procedures which perform the risk
measures calculations. Then, some basic concepts about fuzzy logic and fuzzy arithmetic are
introduced, after which an explanation on how the uncertain input data can be represented by
fuzzy numbers is made. Finally, test results of combined uncertainty and sensitivity analysis in the
risk evaluation of a toxic gas release are presented and extensively discussed, in order to show
which effect each uncertain input has on the output uncertainty. q 1998 Elsevier Science B.V. All
rights reserved.

Keywords: Fuzzy logic; Hazardous materials transportation; Individual risk; Risk analysis; Societal risk;
Uncertainty evaluation

1. Introduction

Paraphrasing a famous statement of Albert Einstein, we can say that ‘‘so far as the
input parameters in a risk analysis try to describe reality, they are not known with
certainty, and so far they are known with certainty, i.e. they can be expressed by a
single-point value, they do not refer to reality.’’ Since risk estimates are often used to
evaluate the safety of an industrial plant, in order to find which additional safety
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measures can reduce the risk, or to support public authorities in establishing emergency
planning or new plant siting, in one word to describe reality and eventually to take
decisions about how to modify it, it is better not to use for this aim a quantity, like an
absolute risk value, which, using Einstein’s words, does not refer to reality. In these
situations uncertainty evaluation becomes a key variable which can not be neglected.

A first application of fuzzy logic to uncertainty estimation in an elementary and
w xsimple case of risk analysis can be found in Ref. 1 . Few introductory considerations

about an application to uncertainty evaluation in transport risk analysis are presented in
w xRef. 2 . In this paper, instead, an extensive explanation shows how fuzzy logic can be

used in the very complex and computing-time-intensive quantitative analysis of risk
arising from road and pipeline transport of dangerous substances in a populated area;
furthermore, results about a case study test are presented. In the case of transportation
risk analysis, very often, there is only little and very sparse information available. In this
case of data scarcity, where no highly reliable results can be expected, instead of using a
computational intensive technique like the Monte Carlo simulation, a fuzzy logic

Žapproach, which needs only three model runs one for the single-point risk value and
.two to find the curves delimiting the uncertainty band , could be a more advisable

vehicle for evaluating uncertainty, so much that, to construct fuzzy numbers, little
information can be sufficient.

The use of fuzzy logic in risk analysis is, to our knowledge, innovative. For this
reason, it can stimulate perplexity, since some methodological objections need to be
considered and discussed. In this sense, this work will also be an attempt to justify some
of them and to put in evidence the potentialities this technique has in the field of risk
analysis.

2. The risk models

In this section, a brief survey of the mathematical models used to calculate the
individual and societal risk is given. A more extensive and complete description of these

w xprocedures is given in Refs. 3–5 .
Since a road tanker release can occur in any point along the road on which the tanker

is travelling, and a pipeline accident can take place everywhere along the pipeline route,
a tanker or a pipeline conveying a dangerous substance can be considered as a ‘linear
risk source’ equivalent to a great number of point-risk sources. First, it is necessary to
characterise the point-risk source by defining the release cases, i.e. by assigning a hole
size, a physical state of the outcome, a release rate, a release duration and a likelihood of
occurrence to the possible accidents which may occur during the transport, and which
have been chosen to classify all possible releases. Then, suitable meteorological

Ž .conditions given by the pairs ‘atmospheric turbulence class–wind speed’ have to be
chosen. Afterwards, consequence models are used to calculate the spatial distribution of
the physical effects of each pair ‘release case–meteorological condition’, i.e. concentra-
tions if the hazardous chemical is a toxic one, thermal radiation and blast overpressures
if it is flammable. The physical effects are then combined with proper exposure times to
obtain the received doses which are converted in vulnerabilities, i.e. death probabilities
of an average individual, through ‘probit’ equations. In this way, a vulnerability map,
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i.e. the vulnerability distribution around the risk point, is assigned to each pair ‘release
case–meteorological condition’. These maps and the release case frequencies are the
inputs for both the individual and societal risk models.

In a fuzzy logic approach, the characterisation of the release cases is strictly
connected with the fuzzy representation of the input variables, as explained in the
following sections.

2.1. The indiÕidual risk model

The individual risk at a test area point, i.e. a point corresponding to a real location of
a geographical site, is given by the sum of the risks created at that point by all arcs of

Ž .the linear risk source i.e. the road or pipeline . In order to calculate the individual risk
Ž .at point P due to an accident at point Q t , where t is a curvilinear route abscissa, the

vulnerability maps are combined with the probability of occurrence of different seasonal
situations, weather conditions and wind directions to obtain the unit risk maps. The unit

Ž .risk R due to the point risk source Q t at a generic point O of the unit risk mapQŽ t .™ O

for the ith release case is a parameter given by
N Nseas met 2p

R i s x j P j,k ,q Õ i ,k ,q dq , 1Ž . Ž . Ž . Ž . Ž .Ý ÝHQŽ t .™ O wind QŽ t .™ O
0js1 ks1

where N and N are the numbers of different seasonal situations and meteorologicalseas met

conditions, respectively; P is the probability density function of a given windwind

direction q for a specified meteorological condition k and seasonal situation j and
Ž .Õ is the vulnerability that a release i at Q t creates at O when the meteorologi-QŽ t .™ O

Ž .cal condition is k and the wind direction is q . In the case of a road transport, x j is the
Ž Ž .fraction of the year that tankers travel on the road in a given season the symbol x jV

.is used in this case ; while, for a pipeline transport, it is the fraction of the season during
Ž Ž . .which the pipeline is active the symbol x j is used in this case . The unit risk mapsp

are then combined with proper frequency factors and translated along the route to
describe the changes in the position where an accident can occur, i.e. the contributions

Ž .of all point risk sources Q t to the risk at P. Finally, they are summed for all release
cases to obtain the global individual risk at P, IR :P

Nrel

IR s f i ,t R i d t , 2Ž . Ž . Ž .Ý HP rel QŽ t .™ P
Lis1

Ž .where L is the road or pipeline route, N is the number of release cases and f is therel rel

frequency of the ith release case, which has different expressions for the road and the
pipeline.

The release case frequency for the road is given by

f i ,t sl t p p i p n , 3Ž . Ž . Ž . Ž .rel R rel F I V

Ž y1 y1.where l is the average incident rate incidents vehicle km , p is the probabilityR rel
Ž .to have a release once an incident has occurred, p i is the probability of the release ofF

Ž .a particular size, p is the ignition probability for flammable substances only , and nI V

is the number of yearly travelling tankers.
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The release case frequency for the pipeline is calculated as

f i ,t sl t p i p , 4Ž . Ž . Ž . Ž .rel P F I

Ž y1 y1.where l is the average release frequency releases year km .P
Ž .In order to perform the line integral of Eq. 2 , it is necessary to represent the route as

a polygonal curve of N straight segments, each characterised by constant releaseseg
Ž .frequency values. With this hypothesis, Eq. 2 becomes

NN segrel

IR s f i ,l R i d t . 5Ž . Ž . Ž .Ý Ý HP rel QŽ t .™ P
Liis1ls1

2.2. The societal risk model

Ž .Societal risk can be represented by means of F N curves, where F is the frequency
of all accidents capable of causing the death of N or more persons. Apart from the
vulnerability maps defined for each release case–meteorological condition, it is neces-

Ž .sary to identify on a population map the: 1 zones of rectangular shape, where people
may be considered uniformly distributed with a density depending on the area being an

Ž . Ž .urban, a suburban or a rural one; 2 roads, where people are linearly distributed; 3
aggregation centres, e.g., schools, hospitals, and commercial sites, where people can be
considered as clustered. Furthermore, the probabilities of each category of people being
indoor have to be assigned.

Ž .At the point risk source Q t , a scenario is given by the combination release case
i–seasonal situation j–meteorological condition k–wind direction q . The number of

scenŽ . Ž .fatalities N i, j,k,q due to each scenario when an accident occurs at Q t isQŽ t .
evaluated according to the following equation.

N scen i , j,k ,qŽ .QŽ t .

nL

s r j Õ i ,k ,q x j q 1yx j a d LŽ . Ž . Ž . Ž .Ž .Ý HL QŽ t . L L P , L mm m m m
L mms1

nA

q r j Õ i ,k ,q x j q 1yx j a d AŽ . Ž . Ž . Ž .Ž .Ý HA QŽ t . A A P , A nn n n n
A nns1

nC

q Õ i ,k ,q x j q 1yx j a N j , 6Ž . Ž . Ž . Ž . Ž .Ž .Ý QŽ t . C C P ,C Co o o o
os1

where n , n and n are, the numbers of lines, rectangles and points on the populationL A C

map, respectively; r and r are the people densities corresponding to the mth lineL Am n

and the nth rectangle, respectively; N is the number of persons in the aggregationCo

centre o; x , x and x are the fraction of people staying indoors and a ,L A C PyLm n o m

a , a are the mitigation factors deriving from being indoors on the generic line,PyA PyCn o

rectangle or aggregation centre, respectively; eventually, Õ is the vulnerability due toQŽ t .
Ž .a release in the point risk source Q t stored in vulnerability maps. To perform the

Ž .integration steps of Eq. 6 , each vulnerability matrix is linearly interpolated obtaining a
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continuous function. An efficient numerical algorithm based on the ‘circuitation theo-
rem’ accelerates the surface integration that constitutes the slowest step of the procedure.

Each scenario of the point risk source has to be characterised by a number of
scenŽ .fatalities N i, j,k,q and a frequency per unit length and unit angle, defined asQŽ t .

f scen i , j,k ,q s f i ,t x j P j,k ,q . 7Ž . Ž . Ž . Ž . Ž .QŽ t . rel wind

scenŽ . Ž .In order to evaluate N i, j,k,q for a given scenario at a point risk source Q t ,QŽ t .
the population map is overlaid with the vulnerability maps, which are rotated to describe

scenŽ . scenŽ ) Ž .the changes in the wind direction. Once N i, j,k,q and f i, j,k,q at point Q tQŽ t . QŽ t .
Ž Ž ..are known for each scenario, F N i, j,k , i.e. the cumulative frequency function perQŽ t .

Ž .unit length at point Q t , can be evaluated by taking into account all wind directions. To
simulate the change in the position where accidents can occur, the vulnerability maps are

Ž . Ž Ž ..translated along the route, and for each route point Q t , the evaluation of F N i, j,kQŽ t .
Ž Ž ..is performed. The last step of the procedure is to integrate F N i, j,k along theQŽ t .

Ž Ž ..route obtaining F N i, j,k , and, for fixed values of N, to sum the integrated values for
all combinations of release case–meteorological condition–seasonal situation, in order

Ž .to obtain the final F N curve.
As in the individual risk model, the route is represented by a polygonal curve of Nseg

straight segments, each characterised by constant release case frequency values. For
Ž . Ž .each segment l, the outlined F N calculus is performed, and eventually, the F Nl l

Ž .curves are summed for constant N values to obtain the F N curve for the whole route.

3. Fuzzy logic

3.1. Fuzzy sets

In this section, some basic concepts about fuzzy sets and their notation and
Ž w x.terminology will be introduced this is explained in more detail in Refs. 6,7 . A crisp

Ž .set A that is a classical nonfuzzy set can be defined by a ‘membership function’ x ,A

which can assume only the values 0 and 1: for each xgX, when x s1, x is declaredA

to be a member of A, and when x s0, x is declared as a nonmember of A.A

In the natural language, however, concepts very often contain some vagueness that
does not allow to divide elements in such a sharp way between two groups, members
and nonmembers. This vagueness could mathematically be represented by allowing the
characteristic function to assume all values between 0 and 1, so expressing different
grades of membership of each element xgX in A.

Apart from the membership function, a fuzzy set can also be fully and uniquely
represented by its a-cuts. Given a fuzzy set defined on X, an a-cut is the crisp set that
contains all the elements of X whose membership grades in A are greater than or equal
to the specified value of a . If they are only greater than a , the crisp set is called a
‘strong a-cut’.

3.2. Fuzzy numbers and fuzzy arithmetic

If a fuzzy set A defined on the set of all real numbers R has the following three
Ž . Ž .properties: 1 A is a fuzzy set whose largest membership grade is 1, 2 the a-cuts of
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Ž x Ž .A for every ag 0,1 are closed single intervals, and 3 the strong a-cut for as0 is
bounded; it is called a ‘fuzzy number’.

Fuzzy arithmetic consists of performing arithmetic operations on fuzzy numbers in
terms of arithmetic operations on their a-cuts, i.e. on closed intervals, using the rules
and the notations of an area of classical mathematics called ‘interval analysis’. Basi-
cally, the endpoints of the a-cuts, on which the operation has to be performed, must be
combined according to the operation. The minimum and maximum values of the
solution will define the lower and upper endpoints of the solution interval, respectively.

4. How to construct fuzzy numbers in transport risk analysis

Uncertainty evaluation in the area of risk assessment can properly be handled by
means of fuzzy logic, since the significance of fuzzy numbers is that they facilitate
gradual transition between states and, consequently, possess a natural capability to
express and deal with uncertainties.

In this study, four variables have been considered uncertain for each mean of
Ž .transport: the release frequencies, the release rates or the release quantities , the

residential air exchange rate and the probability of people being indoor.
Performing the transportation risk analysis, it was possible to find probability density

w xfunctions for some uncertain inputs. As explained in Ref. 8 , a connection between the
‘degree of membership’ and the ‘probability of occurrence’ has been established by
means of a bijective transformation which turns a probability measure into a degree of
membership. For these inputs, this ‘transformation procedure’ has been adopted to
construct fuzzy numbers.

For the others, for which only little information and not probability density functions
have been found, simple shapes, like triangular, trapezoidal, Gaussian or more generally

w xsymmetrical ones, have been used to represent fuzzy numbers, as suggested in Ref. 6 .

4.1. Pipeline release frequency

Data for pipeline release frequencies and equivalence hole size probabilities have
w xbeen taken from Ref. 9 , where they are given for a pinhole, a medium hole and a

guillotine breakage. In Table 1, the main features of the test case pipeline are
summarised.

The total release frequency l can be calculated from two different viewpoints. TheP

first is that of the pipeline owner, who will assume values as low as possible to
demonstrate the safety of his plant, and the second one is that of the pipeline opposers,
e.g. people living close to it, who will assume values as high as possible: figures of
2=10y4 and 7=10y4 ev kmy1 yeary1 are obtained, respectively, from the 2 parties,
which can be considered as the endpoints of the a-cut for as0. Since a lognormal

w xdistribution is used to describe failure rates where there is quite uncertainty 10 , a curve
with a lognormal shape has been taken to represent the pipeline failure frequency.
Through the above mentioned ‘transformation procedure’, this curve has been converted
to a fuzzy number, which is shown in Fig. 1.
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Table 1
Main features of the test case pipeline

Transported substance ammonia
Diameter 200 mm
Wall thickness 11.1 mm
Earth cover 1.5 m
Year of construction 1990

y1 8 y1Ž .Design flow 10.4 kg s 3.28=10 kg yr
Isolation valve spacing 10 km

The probabilities p of the release being a pinhole, a hole or a guillotine ruptureF

have been taken equal to 43%, 43% and 14%, respectively, and they have been
considered as single-point values.

4.2. Pipeline equiÕalence hole sizes

The small and the medium hole diameters have been represented as fuzzy numbers.
In the absence of further information, a simple normalised symmetrical Gaussian bell

Ž . Ž .distribution, adjusted so that the a-cuts for as0 are 0, 20 and 20, 200 , respectively,
was chosen for both, as shown in Fig. 2. Since the release rate is a square function of the
hole diameter, the outflows will have an asymmetrical bell shape.

4.3. Road tanker failure frequency

The road tanker failure frequency can be expressed as f sl p , where lroad tanker R rel R
Ž y1 y1.is the frequency in ev km vehicle that a tanker is involved in an incident and prel

is the probability that there is a release once the incident has happened. Historical data

Fig. 1. Fuzzy representation of l .P
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Fig. 2. Pinhole and medium hole diameters as fuzzy numbers.

w x y1both for l and p have been taken from Ref. 11 . An 80 km h rural road has beenR rel

considered in the case study test. In Fig. 3, the percentage of segments of 80 km hy1

Žrural road as a function of different l ranges is reported as a bar diagram very smallR
.percentages obtained from insignificant samples were omitted .

The average incident frequency for tankers on rural roads is about 0.2=10y6 ev
kmy1 vehicley1. In order to obtain the percentage of segments as a continuous function

Ž y1 .Fig. 3. Rural road segments 80 km h as a function of l .R
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of l , a curve, representing a probability density distribution, was drawn inside the barR
Žgraph, having a maximum when the abscissa equals the average incident frequency Fig.

.3 . This curve has been converted to a fuzzy number by means of the above mentioned
‘transformation procedure’.

w xIn Ref. 11 , the release probability is estimated as 1–3% for a thick-walled tanker.
Values in this range or just outside can be derived by analysing historical data and from

Ž .other published literature. Translating this data into fuzzy logic, the interval 1, 3% can
be taken as the a-cut for as0.4. Since there is no other information about p , arel

w xsimple regular triangular shape was considered suitable for it, as suggested in Ref. 6 .
The ammonia tankers travelling yearly on the road have been supposed to be 16 425;

since road tankers have a capacity of 20 000 kg vehicley1, the road has an annual flux of
ammonia of 3.28=108 kg yeary1, like the pipeline.

4.4. Road tanker equiÕalence hole sizes

w xIgnoring releases below 2000 kg, in Ref. 11 , three different ranges for the outflow
quantities of a generic hazardous chemical have been considered: 2000–6000 kg,
6000–14 000 kg and 14 000–20 000 kg; the probabilities p of a release belonging toF

one of these ranges are 0.25, 0.35 and 0.40, respectively. In order to perform calcula-
tions and in the lack of any other information useful to obtain the diameter ranges, it has
reasonably been supposed that it takes a tanker 60 min to release 2000 kg, 30 min for
6000 kg and 15 min for 14 000 kg; greater releases are assumed to be instantaneous.
From these data, it is possible to evaluate the outflow rates for the small and the medium

Žholes, and, knowing the mass flow rate which depends on the particular chemical
.substance , to obtain the hole diameters corresponding to the above release quantities.

The main results of these calculations, performed in the case of an ammonia tanker, are
summarised in Table 2.

The diameter ranges in Table 2 have been taken as the a-cuts for as0 of two
normalised Gaussian bells, from which the corresponding release rates are easily
obtained as fuzzy numbers.

The ammonia totally released through the large hole has also been represented as a
fuzzy number. It has been supposed that the release quantities for all three rupture
classes have the same fuzzy number shape; the total outcomes for the small and the
medium holes have been calculated by multiplying the release rates by the release

Žduration for the latter ones a symmetrical triangular shape has been adopted, consider-
.ing the ranges in Table 2 as the a-cuts for as0 . An analogous shape, as found for the

Table 2
Release rates characterisation for an ammonia tanker

Rupture class Small hole Medium hole Large hole

Ž .Release quantity kg 2000 6000 6000 14000 14000 20000
Ž .Release duration min 60 30 30 15 instantaneous

Ž .Outflow rate kgrs 0.56 3.33 3.33 15.56 r r
Ž .Hole diameter mm 6.5 15.8 15.8 34.2 r r
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Fig. 4. Fuzzy representation of the release quantity for the tanker large hole.

first two rupture classes, has been considered also for the large hole release quantity,
Ž .taking the interval 14 000, 20 000 as the a-cut for as0, leading to the fuzzy number

of Fig. 4.

4.5. Residential air exchange rate

w xIn Ref. 12 , the results of a statistical analysis about the probability distribution for
residential air exchange rates are reported. It has been found that the experimental data

Fig. 5. Analysts’ response as a function of the probability of people being indoor.
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follow a lognormal distribution. In order to construct a fuzzy number, this probability
distribution has been modified as to have the a-cut for as0 a closed interval, and the
above mentioned ‘transformation procedure’ has been applied to obtain a fuzzy number.

4.6. Probability of residential people being indoor

Not distinguishing between night and day, a 24-h average probability has being
w xconsidered, taking data from Ref. 13 , where four possible values, each reported by a

different literature reference, are reported: 64%, 88%, 96% and 99%. Supposing each
value to be expressed by 25% of risk analysts, then, 25% of them assign the indoor

w x Ž w xpresence probability a value in the range 60, 80% 12.5% in the range 60, 70% and
w x. w x w12.5% in the range 70, 80% , 25% in the range 80, 90% and 50% in the range 90,

x100% . The risk analysts’ response percentage can be reported as a function of different
indoor presence probability ranges, and a curve can be drawn inside this graph to obtain
a continuous probability density function, as shown in Fig. 5. Applying the usual
‘transformation procedure’ to this curve, a fuzzy number is obtained.

5. Test results

In order to show which graphical representation can be assumed by the final risk
measures evaluated by means of fuzzy logic and how they can be interpreted, calcula-
tions have been performed on a case-study area, where the wind angle probability has
been taken uniformly distributed. This area is shown in Fig. 6, from which the road and
pipeline routes and the population distribution can be derived. Calculations have been

Ž . y3 y2 Ž .Fig. 6. Case study test area: diagonal brush suburban area, 8.33=10 persons m ; horizontal brush rural
y3 y2 Ž . Ž . Žarea, 2.27=10 persons m ; bell schools, 240 persons in each one; H hospital, 200 persons; four-leaf

. y1clover commercial site, 400 persons; on road population: 0.06 persons m ; and road transport individual risk
Ž y6 .1=10 level contours .
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performed for both the road and the pipeline. The results reported in this work mainly
refer to the road.

The individual risk is a point function, and for each point, it can be represented as a
fuzzy number. The road individual risk as a fuzzy number is reported in Fig. 7 for point
Ž .1800,1700 where the hospital is situated.

However, a more useful representation of it can be given by means of level contours.
For a fixed risk level, two contours can be generally drawn for each a-cut, correspond-
ing to the lower and the upper a-cut endpoints, respectively. In Fig. 6, the 1=10y6

level contours for the road transport of ammonia are mapped for as1 and for as0.2
Žthe one corresponding to the lower endpoint of the a-cut 0.2 is not reported, since in

y6 .every area point inside this curve the risk is below 1=10 .
The single-point risk curves can be obtained by taking for each input variable the

value corresponding to the a-cut 1, while for the uncertainty bands, by taking the values
corresponding to an a-cut with 0Fa-1. The a-cut level to which relate the
uncertainty band can be chosen arbitrarily; in this case study, the uncertainty bands
corresponding to the a-cut 0.2 are presented. It is worth noting that the uncertainty band
corresponding to the a-cut 0.2 contains not only all uncertainty bands at a-cuts levels
with a)0.2, but also the risk curves resulting from all possible combinations of the
uncertain input data values taken at different a-cut levels with aG0.2. Through the

w x‘transformation procedure’ proposed in Ref. 8 , the output fuzzy numbers representing
risk values can be converted to statistical entities which can be viewed as an estimate of
the output probability density distributions. In this way, the uncertainty range corre-
sponding to each a-cut is put in relation with an interval of the probability estimate; in

w xRef. 8 , it has been demonstrated that the a-cut corresponding to a specified level a )

Ž .is greater or equal than the probability estimate interval delimiting the 1ya ) 100
percentile. This means that, for instance, the a-cut for as0.2 is greater or equal than
the probability estimate interval delimiting the 80% percentile, i.e. the region where 80%
of risk analysts would draw the risk curves. For example, looking at Fig. 7, more than

Ž .Fig. 7. Road individual risk at area point 1800,1700 as a fuzzy number.
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Fig. 8. Fuzzy representation of road F.

80% of risk analysts would say that the road individual risk at the area point
corresponding to the hospital is between 1=10y9 and 3=10y7 ev yeary1 ; while,
considering Fig. 6, more than 80% of risk analysts would say that the road individual
risk is above 1=10y6 inside the outer contour line.

Ž .In a fuzzy logic analysis, the societal risk, too, represented by means of F N curves,
is a function of a , so that a tridimensional graph is possible for it, being the two

Ž .Fig. 9. F N curves for the road and the pipeline.
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Ž . Ž .Fig. 10. Road F N release frequency as fuzzy set .

horizontal axes F and N and the vertical axis a . Since tridimensional figures are
Ž .difficult to read, sections of the FrNra graph at constant N values Fig. 8 or at

constant a values are generally more useful. The latter ones are the most important,
since they show the single-point curve, drawn at as1, and the uncertainty band,

Ž .corresponding to as0.2 Fig. 9 .
Fig. 9 has been drawn considering the release frequencies, the release rates, the

buildings air exchange rate and the probability of people being indoor as fuzzy numbers

Ž . Ž .Fig. 11. Road F N release rate as fuzzy set .
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Ž . Ž .Fig. 12. Road F N air exchange rate as fuzzy set .

all together. In order to perform a sensitivity analysis, i.e. to see which of these variables
mainly contribute to the amplitude of the uncertainty band, they have also been
considered as fuzzy numbers one at time. Results for the road are shown in Figs. 10–13.
From them, it can be immediately derived that the uncertainty about the residential air
exchange rate and the probability of people being indoor does not influence at all the
total road risk uncertainty, and that, among the road release rates and release frequencies
uncertainties, mostly the latter ones contribute to it for small N.

Ž . Ž .Fig. 13. Road F N probability of being indoor as fuzzy set .
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6. Conclusions

In this paper, a new methodology of evaluating uncertainty in risk assessment has
been presented, based on fuzzy logic, and has been applied to risk estimation for the
transportation of toxic substances by both road and pipeline. If computer power and
good probability density functions for all uncertain inputs are available, the traditional
statistical analysis based on the Monte Carlo method can successfully be applied to
evaluate uncertainty. Since there is very often only little and very sparse input data
available in hazardous materials transportation risk analysis, a simpler and less computa-
tional intensive procedure like fuzzy logic can be a useful alternative approach for
quantifying uncertainty ranges.

It is also worth noting that the fuzzy logic methodology allows, like the Monte Carlo
method, the identification, from all uncertain variables, of those which most greatly
influence the output, and the rapid evaluation of the effect that changing the values of
these variables has on the final result. The importance of this flexibility makes the
proposed technique useful in land use planning, safety management and safety control
activities, since decision makers can quickly test the suitability of alternative choices in
the adoption of preventive and protective measures.
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